IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-34, NO. 6, JUNE 1986

667

Electromagnetic Instability of a Rotating
Electron Layer in a Sheath Helix

V. K. JAIN anp V. K. TRIPATHI

Abstract —A sheath helix supports slow electromagnetic modes with
phase velocity considerably lowet than the velocity of light in a vacuum, In
the presence of a rotating electron layer, the modes can be resonantly
driven unstable via cyclotron maser interaction. Using the perturbation
technique, the growth rate of the-instability is obtained in the weak-beam
approximation and is seen to decrease with the slowing down of the modes.
For lower order modes, the growth rate is comparable to the one with a
cocentric cylindrical waveguide. However, for higher order modes, the
growth rate decreases rapidly, suggesting that a sheath helix may be used to
suppress the higher order modes.

I. INTRODUCTION

YROTRON AND ROTATING electron-layer mag-

netrons have recently come up as potential high-power
sources of millimeter and submillimeter waves [1]-[5]. The
basic mechanism of energy transfer in these devices is the
cyclotron maser instability. In the presence of a signal of
frequency near any harmonic of electron cyclotron
frequency, the electrons tend to bunch in their gyrophases
due to the relativistic dependence of mass on velocity.
When the bunching is favorable, it tends to enhance the
signal, leading to the growth of the instability. The cyclotron
resonance is sensitive to the parallel velocity of electrons
and also to the parallel wave number of the waveguide
mode. Earlier experiments on these devices have employed
cylindrical waveguides for cyclotron maser interaction in
which the phase velocities of the modes are greater than the
velocity of light in a vacuum, and parallel motions do not
have an important role. However, it is worthwhile to
examine the effect of the slowing down of these modes on
cyclotron maser interaction.

Sheath helix is one of the various slow wave structures
that have been widely employed in the conventional travel-
ing wave tubes [6]-[8]. Recently, Choe and Uhm [9] have
studied the effect of slowing the modes on cyclotron maser
interaction by mounting a sheath helix inside a gyrotron.
In this device, the guiding centers of the electrons lie on a
circle of finite radius. In this paper we investigate the
cyclotron maser instability of a rotating electron layer in a
sheath helix. The model considered here is different from
that of Choe and Uhm in that the guiding centers of the
electrons of the rotating layer lie on the axis of the sheath
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helix. Destler et al., [5] have studied the effect of a slow
wave structure for waves traveling transverse to the mag-
netic field, It has led to the narrowing of the spectrum.
Here we consider the effect of the slowing down of the
modes in the direction of ambient magnetic field. First, a
dispersion relation for the electromagnetic modes in a
sheath helix is obtained in cylindrical geometry in the
weak-beam approximation (i.e., the density of the beam is
too low to alter the modes of the helix) in Section II. Then,
the growth rate of the modes is obtained using a well-known
perturbation technique. The solution of the dispersion rela-
tion and the growth rate are obtained for various helix
parameters and are discussed in Section III.

. II. DISPERSION RELATION

We consider a sheath helix of radius a and pitch L (Cf
Fig. 1) having infinite conductivity in the direction of the
helix wire i.e., at an angle y =cot™!(2ma/L) with the
plane normal to the axis of the helix, and zero conductivity
in the transverse direction. A thin hollow rotating electron
layer of radius r, propagates along the axis of the system
with axial drift velocity ¥, and azimuthal velocity V,,. The
system is immersed in a uniform axial magnetic field B,

The sheath helix, due to its anisotropic conductivity,
supports mixed TE and TM modes [8]. The fields may be
written as '

-

E=E(r)exp[—i(wt~ Bz —mb)]

B=B(r)exp[—i(wt — Bz —mb)]
where o, B are the angular frequency and parallel wave
number of the wave, respectively, and m is the azimuthal
mode number. The wave equation governing the propa-
gation of waves in cylindrical geometry can be written as
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where p and J are charge and current densities. In the

" weak-beam limit the contribution of the beam on the mode
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Fig. 1. Schematic of a sheath helix with a rotating electron layer.

structure can be neglected
? 13 m* o
(’(97*75‘77+?’BZ)E2=0
7?2 1434 m* o
(—a—rj+75-72-+—cj—32)32=0. (4)
The solutions of (3) and (4) inside and outside the helix can
be expressed, respectively, as

EQ = A,1,(§,r)exp |- i(wt — Bz — mb)]
B =C,1,(¢,r)exp[—i(wt— Bz —mb)]
EQ=B,K,(¢,r)exp[—i(wt—Bz—mb)] (7)
B®) =D,K,(¢,r)exp[—i(wt—Bz—mb)]  (8)

where ¢2=82—k% k(=w/c) is the free-space wave
number; I,,, K, are the modified Bessel functions of order
m. The superscripts (i) and (0) refer to the inside and
outside regions. From (5)—(8), on using Maxwell’s equa-
tions, the » and # components of the electric and magnetic
fields in the inside and outside regions can be determined.

Applying boundary conditions on the field components
appropriate to the case of sheath helix [8] and eliminating
the constants 4,, B,,,C,,, D,,, a dispersion relation de-
scribing the relationship between w and 8 of the modes of
the sheath helix can be written as

(3)

(5)
(6)

at? ?
,32["1 + B tan 4’] I,(¢,a)K,(¢,4a)

= k2[mé,, + at, 1,1 (£,a)]

X [ag, K i1 (§na) = mK,(£,0)].  (9)

Now we study the interaction of the rotating electron
layer with modes of the helix. The equation of motion and
the equation of continuity for electrons can be written as

d(yv) . UXB

m— ——e[E+ " } (10)
o (i 0 11
py +v-(n?) = (11)

where m, — e are the mass and charge of the beam elec-
trons; y[=(1—B*— B —B2) /?] is the relativistic mass
ratio with B,=v,/c, Bg=uvy/c, B,=uv,/c. The velocity
components in the equilibrium state obtained from (10) are

Uro = 0
eB
Ugo = (__o)rb___ Wl
myy
U=V, (12)
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where

Yo = (1 - :3020 - 220)_1/2'

In the presence of the electromagnetic eigenmodes fields,
the particle positions and velocities can be expressed as

r=ry+r(6,z1) (13a)
0=0,+wit+0,(0,z,1) (13b)
z=zy+V,t+12,(0,2,1) (13¢)
Uy =Fh (14a)
Vg = 1ob + w,r, (14b)
v, = 2. (14c)

Expressing space-time variations to be of the form
~ exp[— i(wt — Bz — m8))], the perturbed quantities can be
written as

e

= 2 . .
N e O 60, Eg + 0 BeocB,

— ¢2 B,o¢By + 62 ByocB, | (15a)

ie
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_ m L 202
rob = —7 T wBho | Eg
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myya,,

+ iﬂOOBzO(¢r2n - wg)Ez —i zOc¢r2nBr

+ ¢meIBZOCB0 - ¢mwcﬁ0OCBz (15b)

e

1
[_Y2 Ez _nBZOBOOEG -:BHOCBr:I (150)
z0

myeds,
where
a, = ¢’2n(¢’2n - wg)

by =w = BV, — ma,
Y20 = (1 - IBZO)_I/2

Yoo=(1— Boso) e
The linearized velocity components become
U= —i¢, 1
Vg = — i, 1l + w_r,.
U= — i, 2. (16)
We assume the beam to be thin and its density of the
form »n=n,6(r —r,) where n, is surface density of the

beam electrons. The linearized charge and current densities
obtained with the help of (11) can be written as [4]

P=f8(r_"b)+e”b8,(’""rb)"1

J=—end(r—r,) 0+ f8(r—r,)0,

+en,8'(r —r,) 1o, (17)
where
b, —mw,) r
f=en, (————~—)—rl+im01+iﬁz1 . (18)

m b
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Substituting p and J from (17) in (1), expressing the
axial component of the field as E,=% E,,, where E,,, is

zm?

given by (5), multiplying the resulting equation by E* rdr

m

and integrating from 0 to + oo, we obtain a dispersion
relation which in the limit ¢,, — 0 reduces to

(52 - £72n)¢12n = XA, [yF, + F,+ F11,(¢,.r,)
+ XALYF, L, (¢,r,) 1,1 (E,r,) (19)

-]
okl
2
(m+ aﬁm;anxp)
Im+1(£ma)
" IL(§,a)

where

m+ a¢

2 Vb

w

F1=m2(,8— p )"mzﬁozoﬁ_mrbﬁzﬁzoﬁao
a3
+ mﬁoocrb—‘;—

E =—m2(,3—21/2)+m2,832
2 o2 60

w
+ mByoB.orsB> — mBOOB:rb

2
b

gr ,
Fy=- :B"z_ + mByoBoénTs

Yzo
v,
F,= m,Bﬁm(l - % ) ry— mé&, Bior,B

£,.Bp0¢ 2
rp

w

— B?¢,,B.oBgori + B*

and A4, is determined by the normalization condition

[CE.nEyrdr=1.
70

The left-hand side of (19) contains two factors. In the
limit of vanishing beam density, the first factor equated to
zero gives the mode

£2—-¢,=0 (20)

of the helix and the second factor equal to zero gives the
beam mode

(21)
These two modes are coupled via the term on the right-hand
side in (19). The instability occurs when the two factors are

simultaneously zero i.e., the dispersion (w, 8) curves of the
two modes intersect each other. Let the value of w at the

w— BV, — mw,=0.

669
T I i |
2ol Cot ¥= 4 6 8 0 12 o,
1
]
1.5 20
o ) 30
30
1.0} -
BEAM MODE
0.5 -
1 ! |
0 A 8 12
ap

Fig. 2. Dispersion characteristics of the sheath helix for m =1 mode
with coty as a parameter. The solid line represents a beam mode for
V,/c=0.05, aw,/c=1.2.

interaction point be w,, which is a solution of (20) and
(21). Assuming (= w, +iw,) to be complex with w, <« w,
and expanding £ as

3
= + — —_— .
E= bt ol a,) (22)
Equation (19) gives the following expression for the growth
rate

2

XA ¢

w =

g 20 {Ir%.(fm"b)'(YF1+Fz+F3)

1/3
+ Im(gmrb)lm+1(§mrb)YF4}

dn+1)7
6
where n=0,1,2,---.

IIL.

Fig. 2 shows the dispersion characteristics of the sheath
helix for m =1 mode, obtained by solving (9) with cot ¢ as
a parameter. It can be seen that with increasing cot ¢, the
phase velocity of the mode decreases. Also shown in Fig. 2
is the beam mode obtained from (21) for ¥V, /c= 0.05,
aw,/c=12 and m =1. The resonant interaction of the two
modes results in the instability. Determining w, 8 from the
intersection points, the growth rate of the instability
evaluated from (23) is plotted as a function of coty in Fig.
3, only for those modes whose wavelengths are much
greater than the pitch of the helix i.e, [aB/cot ] < 1. The
rate of instability decreases with the slowing down of the
modes.

Calculations were made for several m values and it was
found that the growth rate for lower order modes is
comparable with that obtained for a cocentric cylindrical
waveguide [4]. However, for higher order modes the growth

+COs (23)

RESULTS AND DISCUSSION
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Fig. 3. Variation of the growth rate with coty. The helix and beam
parameters are a = 7.5 cm, w;, /w, = 0.1, r, =6 cm.
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Fig. 4. Variation of the growth rate with coty for backward interaction
for V, /¢=—0.2, a =15 cm. Other parameters are the same as in Fig, 3.

rate decreases rapidly. For example, the growth rate
(aw;/c) of m=8 mode is 0.0076, 0.0065 for coty =30
and 40, respectively. It should be noted here that for
m = 8, the resonant interaction between the beam and helix
modes is possible only when the radius of the helix is
reduced to @ = 6.4 cm. This implies that the higher order
modes can be suppressed by suitably choosing the radius
of the helix. Calculations were also made for backward
interaction by choosing the beam to be propagating in the
opposite direction of the wave. Fig. 4 shows the variation
of the growth rate with cot y for V, /¢ = —0.2, w, /0, = 0.1,
r,=6 cms, a=15 cms, y=6. It is seen that the growth
rate decreases with slowing of the modes for the case of
backward interaction also. In the analysis presented here,
the effect of metallic walls on the mode structure and
growth rate of the instability has not been included. How-
ever, if the walls are at a distance considerably larger than
the helix radius, the effect due to walls can be neglected as
the mode amplitude decays sharply off the helix boundary.

To summarize, we have studied the cyclotron maser
instability of a relativistic electron layer in a sheath helix.
This study was prompted by recent investigations of
Destler et al., who employed the fast wave coupling of the
cocentric waveguide mode with the cyclotron frequency
upshifted beam mode (cyclotron maser interaction) to gen-
erate high-power microwaves. With a view to investigate
the effect of slowing the wave modes on the cyclotron
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maser interaction, a sheath helix has been considered in
place of a cocentric waveguide in our model. The results of
our analysis show that the growth rate of the instability
decreases with a slowing of the modes, implying that the
sheath helix with a rotating electron layer is less efficient as
a microwave source.
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