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Electromagnetic Instability of a Rotating
Electron Layer in a Sheath Helix

V.K. JAIN AND V. K. TRIPATHI

Abstract —A sheath hefix suyports slow electromagnetic modes with

phase velocity considerably Iowef than the velocity of light in a vacuum. In

the presence of a rotating elec~on layer, the modes can be resonantly

driven uustable via cyclotron maser interaction. Using the perturbation

technique, the grohh rate of theinstabifity is obtained in the weak-beam

approximation and is seen to decrease with the slowing down of the modes.

For lower order modes, the growth rate is comparable to the one with a

coeentric cylindrical waveguide. However, for higher order modes, the

growth rate decreases rapidly, suggesting that a sheath helii may be used to

suppress the higher order modes.

I. INTRODUCTION

G YROTRON AND ROTATING electron-layer mag-

netrons have recently come up as potential high-power

sources of millimeter and submillimeter waves [1]–[5]. The

basic mechanism of energy transfer in these devices is the

cyclotron maser instability. In the presence of a signal of

frequency near any harmonic of electron cyclotron

frequency, ihe electrons tend to bunch in their gyrophases

due to the relativistic dependence of mass on velocity.

When the bunching is favorable, it tends to enhance the

signal, leading to the growth of the instability. The cyclotron

resonance is sensitive to the parallel velocity of electrons

and also to the parallel wave number of the waveguide

mode. Earlier experiments on these devices have employed

cylindrical waveguides for cyclotron maser interaction in

which the phase velocities of the modes are greater than the

velocity of light in a vacuum, and parallel motions do not

have an important role. However, it is worthwhile to

examine the effect of the slowing down of these modes on

cyclotron maser interaction.

Sheath helix is one of the various slow wave structures

that have been widely employed in the conventional travel-

ing wave tubes [6]–[8]. Recently, Choe and Uhm [9] have

studied the effect of slowing the modes on cyclotron maser

interaction by mounting a sheath helix inside a gyrotron.

In this device, the guiding centers of the electrons lie on a

circle of finite radius. In this paper we investigate the

cyclotron maser instability of a rotating electron layer in a

sheath helix. The model considered here is different from

that of Choe and Uhm in that the guiding centers of the

electrons of the rotating layer lie on the axis of the sheath
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helix. Destler et al., [5] have studied the effect of a slow

wave structure for waves traveling transverse to the mag-

netic field, It has led to the narrowing of the spectrum.

Here we consider the effect of the slowing down of the

modes in the direction of ambient magnetic field. First, a

dispersion relation for the electromagnetic modes in a

sheath helix is obtained in cylindrical geometry inl the

weak-beam approximation (i.e., the density of the beam is

too low to alter the modes of the helix) in Section II. Then,

the growth rate of the modes is obtained using a well-known

perturbation technique. The solution of the dispersion rela-

tion and the growth rate are obtained for various lhelix

parameters and are discussed in Section III.

II. DISPERSION RELATION

We consider a sheath helix of radius a and pitch L (Cf

Fig. 1) having infinite conductivity in the direction of the

helix wire i.e., at an angle ~ = cot’1 (2ra/_L) with the

plane normal to the axis of the helix, and zero conductivity

in the transverse direetion. A thin hollow rotating electron

layer of radius rb propagates along the axis of the system

with axial drift velocity V~ and azimuthal velocity ~@Q:, The

system is immersed in a uniform axial magnetic field Bo.

The sheath hehx, due to its anisotropic conductivity,

supports mixed TE and TM modes [8]. The fields may be

written as

i= E(r)exp [–i(at–/3z-m6)]

~=~(r)exp [–i(wt-~z–rnfl)]

where u, ~ are the angular frequency and parallel wave

number of the wave, respectively, and m is the azimuthal

mode number. The wave equation governing the propa-

gation of waves in cylindrical geometry can be written as

(-6’21iftn2u2—— )—-@2 E== -i@z+:P (1)
A2+T& 7+C2

(-d21i3m2a2 )—+—–/12 BZ
ar2+Y%– r2 C2

where p and ~ are charge and current densities. In the

weak-beam limit the contribution of the beam on the mode
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—
Sheath hel!x

Fig. 1. Schematic of a sheath helix with a rotating electron layer.

structure can be neglected

(d2 ~am=w= )—+;%–—+7–/32 E==O
(h 2 r’

(3)

(

d= m= 02

)
—++:– T+&?2 BZ=O.
~r 2

(4)

The solutions of (3) and (4) inside and outside the helix can

be expressed, respectively, as

E$j = AmIm(fmr)exp [– i(@t’& –MO)] (5)

~Jj = C#~(&’~r)exp[– i(ut –/3z – m6)] (6)

Ej2=~nK~(g~r)exp [–i(~t– Bz–mO)] (7)

&!? = %~m(~~r)exp[- i(~~–~z - mo)] (8)

where .$; = ~ 2 – k=; k( = ti/c) is the free-space wave

number; 1~, Km are the modified Bessel functions of order

m. The superscripts (i) and (0) refer to the inside and

outside regions. From (5)–(8), on using Maxwell’s equa-

tions, the r and 8 components of the electric and magnetic

fields in the inside and outside regions can be determined.

Applying boundary conditions on the field components

appropriate to the case of sheath helix [8] and eliminating

the constants Am, 13~, Cm, D~, a dispersion relation de-

scribing the relationship between a and ~ of the modes of

the sheath helix can be written as

‘2[m++an+Pm(’ma)Km(’ma)
= k=[mf’m + afmlm+l(tma)l

( )-mKm(fma)].x [aLJm+l $ia (9)

Now we study the interaction of the rotating electron

layer with modes of the helix. The equation of motion and

the equation of continuity for electrons can be written as

d(yti)

[1

$X2
— .—m dt

eZi— — (10)
c

:+6. (n3)=o (11)

where m, — e are the mass and charge of the beam elec-

trons; y [ = (1 – j3,2 – @ – ~~) – 1/2 ] is the relativistic mass

ratio with & = ur/c, PO = .vO/c, & = u= /c. The velocity

components in the equilibrium state obtained from (10) are

0,0 = o

()eBO
Uoo = — rb = aCrb

my.

Uzo = v-b (12)

where

Yo = (1 – ~;. – ~:o)-l/=.

In the presence of the electromagnetic eigenmodes fields,

the particle positions and velocities can be expressed as

r=ro+rl(d, z,l) (13a)

e=60+@ct+61(6, z,t) (13b)

Z=zo+v-bf+ zl(f?,z, t) (13C)

U,l = ?1 (14a)

VOI= ro81 + ticrl (14b)

Uzl= 21. (14C)

Expressing space-time variations to be of the form

- exp [ – i( at – ~z – red)], the perturbed quantities can be

written as

– &P.ocBe + &#eocR] (15a)

e
zl=—

[

~E.–P.0BOOE8–BeocB, 1 (15C)
m Yo& Yzo

where

am = 4%(+:–~2)

~~=ti-~Vb-moC

7,0 = (1 – Bzo) ‘1’2

y~o = (1 – /?00)-1’2.

The linearized velocity components become

vrl = – i~~rl

Vol = — i@wr81 + a,rl.

uzl = — iq~zl. (16)

We assume the beam to be thin and its density of the

form n = n @(r – rb) where nb is surface density of the

beam electrons. The linearized charge and current densities

obtained with the help of (11) can be written as [4]

p= f8(r–r~) +en#’(r-r~)rl

F=–en#(r -r~)iY1+f8(r–rb)60

+ enb~’(r – rb)rltio (17)

where

[+-

(Om- u.) rl
f=en~ 1—+im(31+i~z1 .

% r,
(18)
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Substituting p and ~ from (17) in (l), expressing the

axial component of the field as E== Z~Ez~, where E,m is

given by (5), multiplying the resulting equation by E~~rdr

and integrating from O to + co, we obtain a dispersion

relation which in the limit +~ ~ O reduces to

where

and A ~ is determined by the normalization condition

The left-hand side of (19) contains two factors. In the

limit of vanishing beam density, the first factor equated to

zero gives the mode

,5’’-[; =0 (20)

of the helix and the second factor equal to zero gives the

beam mode

ti-/3Vb-m~C=0. (21)

These two modes are coupled via the term on the right-hand

side in (19). The instability y occurs when the two factors are

simultaneously zero i.e., the dispersion (Q, ~) curves of the

two modes intersect each other. Let the value of u at the

20

1.5

:“

1.0

0.5

1’

—

I
ap

Fig. 2. Dmpersion characteristics of the sheath helix for m =1 mode

with cot ~ as a parameter. The solid line represents a beam mode for

Vh/c= 0.05, aaC/c =1.2.

interaction point be a,, which is a solution of (20) and

(21). Assuming U( = u, + iti,) to be complex with a, <:: u,

and expanding $ as

(22)

Equation (19) gives the following expression for the growth

rate

1
1/3

+ lm(gmrb)~m+l(fmrb)y~4}

(4n + l)7r
. Cos

6
(23)

where n = 0,1,2, . . . .

III. RESULTS AND DISCUSSION

Fig. 2 shows the dispersion characteristics of the sheath

helix for m = 1 mode, obtained by solving (9) with cot j) as

a parameter. It can be seen that with increasing cot ~, the

phase velocity of the mode decreases. Also shown in Fig. 2

is the beam mode obtained from (21) for Vb/c = (1.05,

atoC/c = 1.2 and m =1. The resonant interaction of the two

modes results in the instability. Determining to, ~ from the

intersection points, the growth rate of the instability

evaluated from (23) is plotted as a function of cot ~ in Fig.

3, only for those modes whose wavelengths are much

greater than the pitch of the helix i.e., [a~/cot ~] <<1. The
rate of instability decreases with the slowing down of the

modes.

Calculations were made for several m values and it was

found that the growth rate for lower order modes is

comparable with that obtained for a cocentric cylindrical

waveguide [4]. However, for higher order modes the growth
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Fig. 3. Variation of the growth rate with cot+. The helix and beam
parameters are a = 7.5 cm, ub/wC = 0.1, rb= 6 cm.

““’l“’----
01 ,

04 8 12 16 20 24 28 32
cot y

Fig. 4. Variation of the growth rate with cot $ for backward interaction
for Vb/c = – 0.2, a =15 cm. Other parameters are the same as in Fig. 3.

rate decreases rapidly. For example, the growth rate
(atil/c) of m = 8 mode is 0.0076, 0.0065 for cot+= 30
and 40, respectively. It should be noted here that for
m = 8, the resonant interaction between the beam and helix
modes is possible only when the radius of the helix is
reduced to a = 6.4 cm. This implies that the higher order
modes can be suppressed by suitably choosing the radius
of the helix. Calculations were also made for backward
interaction by choosing the beam to be propagating in the
opposite direction of the wave. Fig. 4 shows the variation
of the growth rate with cot+ for V~/c = – 0.2, ti~/oC = 0.1,
rb = 6 ems, a =15 ems, y = 6. It is seen that the growth
rate decreases with slowing of the modes for the case of
backward interaction also. In the analysis presented here,
the effect of metallic walls on the mode structure and
growth rate of the instability has not been included. How-
ever, if the walls are at a distance considerably larger than
the helix radius, the effect due to walls can be neglected as
the mode amplitude decays sharply off the helix boundary.

To summarize, we have studied the cyclotron maser
instability of a relativistic electron layer in a sheath helix.
This study was prompted by recent investigations of
Destler et al., who employed the fast wave coupling of the
cocentric waveguide mode with the cyclotron frequency
upshifted beam mode (cyclotron maser interaction) to gen-
erate high-power microwaves. With a view to investigate
the effect of slowing the wave modes on the cyclotron

maser interaction, a sheath helix has been considered in
place of a cocentric waveguide in our model. The results of
our analysis show that the growth rate of the instability
decreases with a slowing of the modes, implying that the
sheath helix with a rotating electron layer is less efficient as
a microwave source.
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